ELECTROLYTE IMBALANCE

Dr Ruwan Parakramawansha MBBS, MD, MRCP(UK),MRCPE, DMT(UK) (2013/01/24)

OUTLINE....

Pathophysiology, Clinical Features, Aetiology and

Management of.....

- A. Hyponatraemia
- B. Hyperkalaemia

- The most common electrolyte disorder(occur in up to 6% of hospitalized patients)
- Serum sodium concentration of <135 mEq/L
- Due to an excess of body water relative to body sodium content
- Changes in total body water is regulated by thirst, arginine vasopressin(AVP) and the kidney

- Three types:
 - 1. Hypovolaemic Hyponatraemia
 - 2. Hypervolaemic Hyponatraemia
 - 3. Euvolaemic Hyponatraemia

Hypovolemic

Gastrointestinal solute loss (diarrhea, emesis) Third-spacing (ileus, pancreatitis) Diuretic use Addison disease Salt-wasting nephritis

Euvolemic

Syndrome of inappropriate antidiuretic hormone secretion (SIADH) Diuretic use Glucocorticoid deficiency Hypothyroidism psychogenic polydipsia

Hypervolemic with decreased effective circulating blood volume Decompensated heart failure Advanced liver cirrhosis Renal failure

CARDIAC FAILURE

CIRRHOSIS

CLINICAL FEATURES

- CNS symptoms Sodium <125 mEq/L
 - Disorientation
 - Restlessness and agitation
 - Apathy
 - Psychosis
 - Seizures
- Others nausea, vomiting, headache, muscle cramps

COMPLICATIONS OF SEVERE HYPONATRAEMIA

- Due to hyponatraemia induced cerebral oedema,
 - I. Respiratory arrest
 - II. Coma
 - III. Brainstem herniation
 - IV. Death

TREATMENT

- Rapid correction of hyponatraemia can cause **OSMOTIC DEMYELINATION**
- Goal to raise the serum sodium level by 1.5 to 2 mEq/L/hour (<= 12 mEq/L for 24 hours)

OSMOTIC DEMYELINATION

• Characterized by confusion, quadriplegia, pseudobulbar palsy, and 'locked-in syndrome'

TREATMENT OPTIONS

- Hypertonic saline (3%)
- Loop diuretics e.g. Frusemide
- For hypervolemic and euvolemic hyponatremia:
 - Fluid restriction
 - Demeclocycline
 - AVP antagonists e.g. Conivaptan

TREATMENT OPTIONS

• Demeclocycline:

Inhibits AVP action at the distal renal tubules

Render AVP ineffective even in the presence of increased AVP levels

Loss of free water in urine

TREATMENT OPTIONS

• Arginine vasopressin receptor antagonists : Act as an antagonist of vasopressin receptors

Block the effect of vasopressin

Excretion of free water in urine

POTASSIUM BALANCE

- The ratio of ICF:ECF K⁺ concentration ~38:1
- Maintained by basolateral Na⁺, K⁺-ATPase pump
- To maintain the steady state, K⁺ ingestion should be matched with excretion
- K+ secretion at distal convoluted tubule and cortical ducts – main contributor to K⁺ excretion

HYPERKALAEMIA

- Plasma K⁺ concentration >5.0 mmol/L
- Chronic hyperkalemia always due to decreased renal K⁺ excretion
- Hyperkalemia partially depolarizes the cell membrane and prolonged depolarization impairs membrane excitability

CLINICAL FEATURES

Impaired cell membrane excitability causes,

Nervous system :Weakness and flaccid paralysis

- Heart :

ECG changes \rightarrow ventricular fibrillation/asystole

HYPERKALAEMIA- CAUSES

- Renal failure
- Decreased K⁺ secretion
 - Adrenal insufficiency, drugs (ACE inhibitors, NSAIDs, heparin)
- Resistance to aldosterone:
 - tubulointerstitial disease, drugs (K+-sparing diuretics,)

TREATMENT

1. Discontinuing exogenous K⁺ intake and drugs reducing K⁺ excretion

e.g. Angiotensin Converting Enzyme Inhibitors

2. Minimizing membrane depolarization and excitability
– Calcium gluconate

TREATMENT

- 3. Shifting K⁺ into cells
 - Insulin (with glucose to prevent hypoglycemia)
 - NaHCO₃
 - β_2 -adrenergic agonists e.g. Salbutamol
- 4. Promoting K⁺ loss
 - Diuretics
 - Cation-exchange resin e.g. Sodium polystyrene sulfonate
 - Dialysis

SUMMARY

Pathophysiology, Clinical Features, Aetiology and

Management of.....

- A. Hyponatraemia
- B. Hyperkalaemia